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A model describing the internal microstates of particles is used to calculate the 
statistical entropy of a Schwarzschild black hole. The state of the system is 
described by a nonextensive entropy function which is superadditive and so fails 
to be concave. A strict maximum of the entropy does not exist; nonetheless, the 
entropy increases on merging two such systems. 
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1. I N T R O D U C T I O N  

In a recent article, (1) nonextensive thermodynamic systems are con- 
sidered and their relevance to black hole thermodynamics discussed. A 
function f ( X )  is extensive if 

f(aX)=af(X) (H) (1.1) 

for any a > 0. For a gas, the variable X - (U, V) with U the energy and V 
the volume, while for a Kerr -Newman black hole X = (M, J, Q) with M 
the mass, J the angular momentum,  and Q the electric charge. Black hole 
entropy is not extensive but strictly superadditive, r viz. the strict 
inequality in 

S(XA + S(X.) (s) (1.2) 
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is satisfied. In addition to criteria (1.1) and (1.2), the logical development (~ 
requires the notion of concavity 

f(2XA+(1--2) Xe)>~2f(XA)+(1--X)f(XB) (C) (1.3) 

for a constant 2, 0 ~< 2 ~< 1. The principles (1.1) to (1.3) are related by (l) 

C + S - ~ H  (1.4) 

S + H ~ C  (1.5) 

and 

C + H ~ S  (1.6) 

Consequently, if S is required (~1 on physical grounds, then only two cases 
are possible (S, H, C) and (S, H, C). (The symbol IZl denotes not H, or H is 
false, and so forth.) A black hole is not an ordinary thermodynamic system, 
i.e., of the type (S, H, C), in fact, it is of the type (S, H, C). 

In what follows, we consider a collective-mode description of the 
interior of a Schwarzschild black hole, viz. Q = J =  0, and calculate the 
statistical entropy by counting the number of internal configurations of the 
black hole. Interestingly enough, our model is indeed of the type (S, H, C). 
Therefore, the entropy increases when two black holes coalesce but with no 
entropy maximization at the extremum. Our results are analogous to those 
for the generalized ideal gas of Ref. 1 with h < g + 1. 

2. BLACK HOLE M O D E L  

Consider an ideal gas of distinguishable quasiparticles whose number 
is not conserved. The ith type of quasiparticles have mass mi, momenta p, 
and energies 

Ei(p) = ( c 2 p  2 + m2c4) 1/2 >/mo c2 (2.1) 

where mo is the lowest mass of the system. The grand-canonical partition 
function with chemical potential #i = 0 for all i is given by (z) 

It should be remarked that the number of quasiparticles of each type is not 
conserved (z) owing to the creation and annihilation processes taking place 
and so ~ i=  0 for all i. Note also that the quasiparticles are not ordinary 
particles, i.e., neither fermions nor bosons. In fact, the distinguishable 



Stat is t ica l  Ent ropy of  a Schwarzsch i ld  Black Hole 711 

quasiparticles possess the statistics which gives rise to the Gibbs paradox ~2~ 
in statistical mechanics. 

The internal energy U is 

where 

0 B ,( T) 
1 - C , ( T )  

V Be(T) =--~ f e-E'(P)/kTE~(p) dp= 3kTCe(T) 

(2.3) 

4~ + c ~  (m'c2)3(kT) VKl(m'c2/kT) (2.4) 

and the partition function for the ith type of quasiparticle is 

V Ci(T ) -~ f e~r 4~ -- e dp =c-~ (m~cZ)2(kT) VKz(m~c2/kT) <~ 1 (2.5) 

with K~,(x) the modified Bessel function of the second kind with subscript 2. 
The inequality in (2.5) is a consequence of the positiveness of the grand 
partition function (2.2). The entropy is given by 

S=k [-JT(Tln Z)I = - k  ~ ln[1- Ci( T)] + U/T (2.6) 
v i 

If the lowest mass mo = 0, then the inequality in (2.5) implies that for fixed 
V~ T ~  Tma x with (2) 

VT3a, = ~2(hc/k)3 (2.7) 

since (d/dx)[xZK2(x)]=-xZKl(x)<O for 0 ~ < x < ~  and zVKv(z)~ 
2 v- IF(v) as [zl ~ 0 for Re v > 0. Note that the mean number of quasipar- 
ticles is (31 

e-- E~(p )/k T 

f i , ( p )  - ( 2 . 8 )  
1 - C i ( T )  

Therefore, the single-particle distribution is of the Maxwell-Boltzmann 
type and so a maximum temperature for fixed V, viz., Ci(T)<<, Co(T)= 
(8~z/c3h3)(kT) 3 V~< 1 with the aid of (2.5), implies Be(p)~> 0 for all i. 

The pressure is given by 

( c ~  In Z~ =kTs~ Ce(T) P=kT  (2.9) 
)~ V "T l - C i ( T )  
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It is important to remark that the only requirement on the rest mass dis- 
tribution of the quasiparticles is that it must be such that Zi  Bi(T) < o% 
viz., a singularity arises only from the lowest mass state. [Note that 0 ~< 
moc2Ci(T) ~ & ( r )  and so Zi  & ( T )  < oo implies Z i  Ci(T) < oo.] Accor- 
dingly, the internal energy U has a simple pole, for fixed V, at T =  Tma x 
owing to the lowest mass state. Therefore near the singularity we have, 
from (2.6) and (2.9), that 

and 

S =  U/Tma x (2.10) 

P =  U/3V (2.11) 

as T--* Tma x since C o ( T ) = B o ( T ) / 3 k T  by (2.4) for mo=0.  Therefore, the 
pressure is radiationlike. (Notice that the Helmoholtz free energy F =  
k T Z i  l n [ 1 -  Ci(T)] has a weaker logarithmic singularity at T =  Tmax.) 

The entropy (2.10) constitutes the fundamental relation in terms of the 
energy U and the volume V, via (2.7), since by the usual thermodynamic 
definitions 

1 ( 0 S ~  _ 1 

-r- \Yg/  rmax 

and (2.12) 

T cJ 3V 

as T-*  Tmax with the aid of (2.7) thus recovering the pressure (2.11). 
In order to apply (2.7) and (2.10) to the interior of a Schwarzschild 

black hole, one needs to calculate the proper volume inside the surface of 
the black hole. One expects the interior line element to be spherically sym- 
metric and SO (4) 

dis 2 = e v(r'') dt 2 - c 2[e;~(r't) dr 2 + r2(dO 2 + sin 2 0 d~b2)] (2.13) 

Therefore the proper volume enclosed by the surface with proper area  
A = 4gR 2 is 

V =  @r e~/2r2 dr (2.14) 

To proceed further,one needs to know the total stress-energy tensor T~ 
and solve Einstein's field equations for 2(r, t). Note that by (2.11), the 
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approximate equation of state is P = �89 2, where P and p are the proper 
pressure and proper density, respectively. However, this allows us to deter- 
mine T~,v only if one supposes a perfect fluid for the interior of the black 
hole. However, even in this simple case, one has no exact solution of the 
field equation of general relativity. [Note  that for a static field, if P = �89 2 
is strictly valid, then (4) P(r)oce -2v(') and no solution exists with finite 
radius.] Therefore, in order to determine the proper volume inside the 
event horizon let us use a very crude estimate based on a static sphere of 
perfect fluid with constant proper density p. This model leads (4) to an exact 
solution, the interior Schwarzschild solution, for a static spherical dis- 
tribution of perfect fluid with radius R. Notice that the interior metric 
matches smoothly (4) to the exterior Schwarzschild metric. However, for 
finite central pressure, the radius R is restricted by t4) R > 9GM/c 2 and so a 
smaller spherically symmetric particle with radius R = 2GM/c  2 undergoes 
gravitational collapse. Nonetheless, since exact solutions of the field 
equation are extremely difficult to find, we shall determine the proper 
volume with the aid of the interior Schwarzschild solution. Accordingly, we 
suppose 

for r ~< R, with 

e -;~ = 1 - r2/R 2 (2.15) 

R = 2MG/c  2 (2.16) 

where G is Newton's gravitational constant. [ I f  one supposes a perfect fluid 
and 2(r, t) is prescribed arbitrarily, as in (2.15) say, then the quantities 
v(r, t), P(r, t), and p(r, t) may be determined by the field equations.] Now 
e -~ vanishes for r = R and so the surface r = R is t4) null or lightlike. Con- 
sequently, the event horizon with proper area A = 4rrR 2 encloses a finite 
proper volume 

fo e r2 dr -Tr2R 3 (2.17) 
V = 4 ~  (1 -r2/R2) 1/2 

Now, with the aid of (2.7), (2.10), (2.16), and (2.17), the entropy and 
temperature of a Schwarzschild black hole with U =  M c  2 is 

1 
Sbh = ~ (kc3A/4hG) 

and 

(2.18) 

Tbh = 4rc(hc3/8r:kGM) (2.19) 
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where A =4~ R  2 is the area of the black hole event horizon. Condition 
U/kT~> 1 is satisfied for Schwarzschild black holes with masses M much 
greater than the Planck mass, Mp - (hc/G)l/2"~2 • 10 -s g, since (2.18) and 
(2.19) give that U/kT= McZ/kTbh = 2(M/Mp) 2. Note that for a given mass 
M, the temperature (2.19) is greater than the temperature of the emitted 
thermal radiation obtained by Hawking, 15) TH=hc3/8~kGM. Also, the 
entropy (2.18) associated with the internal microstates of the black hole is 
smaller than the entropy obtained by Hawking, ~5) SH=kc3A/4hG. The 
entropy Sev evaporated by a Schwarzschild black hole is always greater 
than or equal ~6) to the Hawking entropy Sn,  which in turn is strictly 
greater than the entropy (2.18), viz., Sbh < SH ~< S~v. Therefore the quan- 
tum evaporation ~5~ of a black hole is an irreversible process. It is interesting 
that (2.18) is below the conjectured upper bound ~7) on the entropy-to- 
energy ratio for bounded systems, viz., S <<, kc3A/4hG. 

It should be remarked that from an information-theoretic approach to 
statistical physics, the entropy (2.18) is a measure of ignorance as to the 
actual state of the system, viz., a black hole specified only by the external 
descriptors M, J = 0 ,  and Q = 0 .  Therefore, the ideal-gas nature of the 
quasiparticles is the means by which this entropy is calculated and in no 
way assumes the system to be in equilibrium since the situation might be a 
nonequilibrium one. Accordingly, the entropy Sbh, which depends on the 
mass M of the black hole, is not an equilibrium entropy if M varies with 
time. For  instance, the case of an evaporating black hole where the mass 
decreases with increasing time. Needless to say, our model does not 
provide a mechanism for such quantum processes. 

3. A R E A  A N D  E N T R O P Y  

The identification (7) of black hole surface with black hole entropy 
suggests 

S = KI R 2 = K'I VaU b (3.1) 

with the positive constants a and b satisfying 

3a + b = 2 (3.2) 

where V= ~2R3, U= Mc 2= c4R/2G and K~ and K' 1 are positive constants. 
The defining Eq. (2.12) gives 

T= K3/R and P = Kz/R 2 (3.3) 

where 

K3 = c4/2GbKx and K2 = aca/2~ZbG (3.4) 
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Given a and K1 all conceivable thermodynamic information about the 
black hole is known. Note that the pressure (3.3) is independent of the con- 
stant K1 appearing in the entropy (3.1). 

In the determination of the value of the constant Kl, Hawking (5) con- 
siders P - 0  and T=hc3/87~kGM, the Hawking radiation temperature. 
Hence, by (3.2) to (3.4), a =0,  b = 2, and K1 = ~c3k/hG. (Note that since 
S ~  U 2, neither the canonical ensemble nor the grand-canonical ensemble 
exists.) If, however, we require the pressure to be a radiation pressure, viz., 
P = U/3 V, then (3.4) gives 3a = b and so by (3.2), a = 1/3 and b = 1. Our 
model for a Schwarzschild black hole, determined by (2.7) and (2.10), 
gives, in addition, that K~ =kc~/2hG. Note that for 0 < b ~< 1, both the 
canonical and grand-canonical ensembles exist. (It is quite possible to 
choose a value for K 1 in order to obtain the Hawking temperature in 
addition to having a radiation pressure, viz., K 1 = 2~c3k/hG, a = 1/3, and 
b = 1. This latter choice gives twice the Hawking entropy, S = kc3A/2hG.) 

It should be remarked that the entropy (2.18) is a result of taking a 
trace of the density matrix associated with the distinguishable quasipar- 
tides constituting the black hole with external state described by M, Q = 0, 
and J =  0. For a nonstationary black hole--quantum processes give rise to 
black hole evaporation(5)--these parameters vary with time and additional 
external parameters may exist. 

4. S U P E R A D D I T I V I T Y  A N D  C O N C A V I T Y  

The relativistic gas model of the black hole interior of Section 2 is a 
microscopic model which satisfies the general macroscopic results (1) sum- 
marized in Section 1. In fact, our statistical model is of the type (S, H, C). 
The proof of this assertion is based entirely on our explicit result for the 
entropy S(U, V) obtained by eliminating Tmax between Eqs. (2.7) and 
(2.10). 

The entropy (2.10) is strictly superadditive 

S(U 1 + g2, V 1 -t-V2)> S(UI,  V1)-]-S(U2, V2) (4.1) 

since by (2.7), Tmax(Vl--t-V2)< Tmax(Vi) for i =  1, 2 and Vir  The non- 
extensivity of (2.10), together with (1.4) and (4.1), implies the failure of 
(1.3). That concavity is violated follows also directly from (2.10) since 

s(2u,  2v) = ~4/3s( u, v) <<. ;~s(u, v) (4.2) 

when 0 ~< 2 ~< 1. [Note that S(0)=  0.] The Gibbs free energy 

G= U + P V -  TS= PV (4.3) 
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by using (2.10). Hence with the aid of (2.7) 

Cp - - T \-~-~ j e = -12PV/Tmax  < 0 (4.4) 

Similarly, Cv - - T(~ZF/OT 2) v = O, K r =- - (1 /V) (~2G/#PZ)T  = 0, and Ks = 
- ( 1 / V ) ( ~ V / S P ) s = 3 / 4 P > O .  It is important to remark that despite a 
negative specific heat, the system is not thermally unstable since the state of 
the system is not determined by entropy maximization. (~) In fact, on merg- 
ing two such systems, with extensive variables U and V, the final entropy 
increases by (4.1). Notice that for Schwarzschild black holes, the energy 
U =  M c  z is an extensive variable and so by (2.16) the volume V enclosed 
by the event horizon, viz., V= ~2R3, is not an extensive variable. Therefore, 
for Schwarzschild black holes (2.10) gives 

s(u~, v , )+s(u2 ,  v 2 ) ~ s ( u  s, v s) (4.5) 

where Uj-= U, + U2 and Vf= [V~/3 + V~/3] 3. Consequently, the coalescence 
of two Schwarzschild black holes always gives rise to an increase of the 
entropy. 

If one considers two systems A and B with entropy (2.10), then the 
total entropy is 

S==_SA+SB=~z 2 /3(k /hc)EUAV1/3+(U--UA)  V~ 3] (4.6) 

where U =  UA + U~ and a symmetric function f ( V A ,  Va) = f ( V B ,  VA) = 
const, which serves as a constraint, is twice differentiable with respect to its 
two arguments VA, liB. [-For a gas f ( V A ,  Vs)  = VA + VB = V and for a 
Schwarzschild black hole f ( V A ,  VB)= V1/3+ V~ 3= VI/3.] The stationary 
value or extremum of (4.6) is given by 

U~ = U~ = U/2 and V A = Va (4.7) 

However, the extremum cannot be a maximum since 82S/~U2 A = 0 and so 

6~2S 6 ~ 2  S ] 
OU~ aU~ 0Va 
02 S 6~2S < O. 

~VA aUA OVZA 

This result is just as for the generalized ideal gas (1) with h < g + 1. 
The nonextensive entropy (2.10) is the result of short-range, many- 

body forces (3) among the constituents of supermassive particles. The con- 



Statistical Entropy of a Schwarzschild Black Hole 717 

fining forces among (Fermi or Bose) constituents are purely a 
manifestation of the correlations resulting from the strictly classical 
statistics of the quasiparticles. The potential energy u(r~,..., r,,) of nl par- 
ticles of mass rn~, n2 particles of mass m~,etc, located at r~ . . . r ne  V is 
given by/31 

V"n'!n2!"" : fvdrl"" fvdr"exp[-u(rl ..... r,)/kT] (4.8) 

with n=nl+n2+ "... Suppose u(rl,...,r,)>~-A, then since l n n l ! +  
in n2!""  ~<ln n! ~ n  in n, we have from (4.8) that 

u(r~ ..... r.) >/ -Bn Inn (4.9) 

with B=kT. Hence, the interaction u(r~ ..... r.) violates the stability 
condition (s/and so the system does not possess a thermodynamic limit. Of 
course, nonextensivity is a consequence of the nonexistence of the ther- 
modynamic limit. 

5. CONCLUSION 

Black hole entropy is shown to be proportioned to the area. The inter- 
nal configurations of the black hole are described by means of dis- 
tinguishable quasiparticles and so the entropy follows from taking the trace 
of the density matrix of a noninteracting gas. This ideal gas of dis- 
tinguishable quasiparticles is equivalent to an interacting gas of particles 
satisfying Maxwell-Boltzmann statistics. The potential energy of n such 
particles violates the stability condition, viz., no thermodynamic limit, and 
so nonextensivity ensues. 
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